Pratap College Amalner

(Autonomous)

(Affiliated to Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon)

SYLLABUS

for

Master of Science (M. Sc.) I [Mathematics]

NEW EDUCATION POLICY

(Effective from 2023)

2023 - 2024

Summary of Distribution of Credits under New Education Policy For M.Sc. (Mathematics)

Sr. No	Type of course	Sem-I	Sem-II	Sem-III	Sem-IV
01	DSC (Theory)	10	10	10	08
02	DSC (Practical)	04	04	04	04
03	DSE (Theory)	04	04	04	04
04	Research Methodology	04	-	-	-
05	OJT/Int	-	04	-	-
06	Research Project	-	-	04	06
Т	otal Credit	22	22	22	22

Teaching and Examination Scheme, Master of Science (M.Sc.)

M.Sc. (Level 6.0) Sem-I (Mathematics)

						Teaching Scheme (hrs/week)		Ev	valuation Sche	luation Scheme	
Sr.	Course	Nam	e of Paper	Total Creatit	Hours/	Theory	Practical	Continuous	End	Duration of	
INO.	Category		-	Credit	Semester	Т	Р	Internal assessment	Semester Evaluation	Examination (Hrs)	
		DSC_25	Advanced Real Analysis	4	60	4	_	40	60	3	
1	DSF	DSC-26	Programming in C++	2	30	2	-	20	30	2 3	
1	DBL	DSC-27	Abstract Algebra	4	60	4	-	40	60		
		DSC-28	Practical	4	120	-	8	40	60	3	
2	Dee	DSE DSE-5 (Choose - One)	Partial Differential Equation	1	60	4	-	40	60	3	
	DSL		Elements in Graph Theory	т	00	т		10	00	2	
3	Research	RM	Research Methodology	4	60	4	-	40	60	3	
		Total		22							

Teaching and Examination Scheme, Master of Science (M.Sc.)

						Teaching (hrs/	g Scheme week)	Evaluation Scheme		me	
Sr.	Course	Nam	e of Paper	Total	Hours/	Theory	Practical	Continuous	End	Duration of	
No.	Category			Credit	Semester	Т	Р	Internal assessment (CA)	Semester Evaluation (UA)	Examination (Hrs)	
		DSC_29	Complex Analysis	4	60	4	-	40	60	3	
1	DSE	DSC-30	Typesetting with LATEX	2	30	2	-	20	30	2	
1		DSC-31	Topology	4	60	4	-	40	60	3	
		DSC-32	Practical	4	120	-	8	40	60	3	
2	DSE	DSE-6 (Choose One)	Linear Algebra Theory of Special Function	4	60	4	-	40	60	3	
3	OJT/FP	OJT	Open Job Training	4	180	-	12	-	-	-	
		Total		22							

M.Sc. (Level 6.0) Sem-II (Mathematics)

SEM-I

	DSC 25: Advanced Real Analysis	Lecture			
	Course Objectives: The aim of this course is				
	• To understand basic elements of measure theory such as measurable				
	sets, functions.				
	• To solve Lebesgue integration and differentiation.				
	• To understand the concepts of abstract measure theory with the help of classical Banach spaces.				
Unit 1	Countable and uncountable sets, Infinite sets and the axioms of choice, Cardinal numbers and their arithmetic, Schroeder- Bernstein theorem, Cantor's theorem and the continuum Hypothesis, Zorn's lemma, Well Ordering principle, Cantor set, Cantor like sets, The Lebesgue functions.	08 L			
Unit 2	Measure on the real line: Lebesgue Outer measure, Measurable sets,				
	Regularity, Measurable functions, Borel sets and Lebesgue	17 L			
	measurability.				
Unit 3	Integration of functions of a real variable, Integration of nonnegative function, The general integral, Integration of series, Riemann and Lebesgue integrals.	15 L			
Unit 4	Differentiation: The four derivatives, Functions of bounded variation, Lebesgue differentiation theorem, Differentiation and Integration.	10 L			
Unit 5	Differentiation of monotone function: Vitali covering theorem (lemma), Fundamental theorem for integral calculus for Lebesgue integral, Absolutely continuous functions.	10 L			
Suggest	ed readings:				
1.G. de Barra, (2000) Measure Theory and Integration, New Age International (p) Limited					
Newl	Delhi. (Chapter 1. Art 1.5,1.7, Chapter 2. Art 2.1,2.5, Chapter 3 Art 3.1 to 3.4	Chapter			
4 Art	4.1, 4.3 to 4.5 Chapter 9 Art 9.3)				

2. H. L.Royden,(2009) **Real analysis**, Prentice-Hall of India (P) Limited, New Delhi, 4th Edition **(Chapter Art-1)**

	DSC 26 : Programming in	Lecture
	C++	
	Course Objectives:	
	The objectives of this course are:	
	• To understand how C++ improves C with object-oriented features.	
	• To learn how to write inline functions for efficiency and performance.	
	• To learn how to design C++ classes for code reuse and to learn how to	
	overload functions and operators in C++.	
Unit 1	Introduction to C++	4L
	Overview of C++ programming language, Setting up the development environment, Basic input/output operations (cin, cout)	
Unit 2	Variables and Data Types Declaring and initializing variables, Integers, floating-point numbers, Basic arithmetic operations in C++	4L

Unit 3	Control Structures	4L
	Conditional statements (if, else-if, else), Loops (for, while), Using loops for	
	mathematical computations	
Unit 4	Functions	4L
	Writing simple mathematical functions (e.g., computing factorial, power)	
Unit 5	Arrays and Vectors Working with arrays and vectors in C++, Basic array operations (accessing elements, modifying values), Using arrays for mathematical operations (e.g., sum, average)	4L
Unit 6	Mathematical Expressions Evaluating mathematical expressions using C++, Precedence and associativity of operators, Implementing basic mathematical formulas as C++ expressions	4L
Unit 7	Basic Algebraic Equations	3L
	Solving simple algebraic equations in C++, Using C++ to verify solutions to equations, Calculating mean, median, and mode in C++	
Unit 8	Trigonometry and Geometry	3L
	Introducing trigonometric functions (sin, cos, tan), Basic geometry computations using C++, Introducing basic C++ math libraries (e.g., <cmath></cmath>)	
Sugges	ted readings:	
1. "C+	+ Primer" by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo	
2. "Sta	rting Out with C++: Early Objects" by Tony Gaddis	
3. "Pro	bblem Solving with C++" by Walter Savitch	
4. "C+	+ For Dummies" by Stephen R. Davis	

5. "Discovering Statistics Using C++" by Andy Field and Jeremy Miles

	DSC 27: Abstract Algebra	Lecture
	Course Objectives:	
	1. To know the concept and applications of Finite groups.	
	2. To study well known theorems for finite groups: Cauchy's Theorem,	
	Sylow's Theorem, Jordan - Holder Theorem.	
	3. To know concepts of particular types of integral domains: ED, PID,	
	UFD.	
Unit 1	Finite groups: Direct products, External direct product of groups,	12 L
	Conjugate classes, Class equation, Cauchy's Theorem.	
Unit 2	Sylow theorems and solvable groups: Sylow p-subgroups, Sylow	15 L
	theorems, Solvable group, Normal series, Composition series, Jordan-	
	Holder Theorem.	
Unit 3	Integral domains: Greatest common divisor, prime element,	15 L
	irreducible element, Euclidean domain, principal ideal domain,	
	Factorization domain, Unique Factorization domain.	

Un	it 4	Polynomial rings: Polynomial rings, Roots of polynomials, Eisenstein's 12 L					
		criterion, primitive polynomial, Gauss lemma, Gaus theorem,					
		factorization of polynomials.					
Un	it 5	Noetherian rings: Finitely generated ideals, Chain conditions, 06 L					
		Noetherian rings, Hilbert basis theorem.					
Su	ggest	red readings:					
1.	Gop	alakrishnan N. S. (2018), University Algebra , Wiley Eastern Limited, New Delhi.					
	(Sec	z. 1.10, 1.12, 1.13, 1.14, Sec. 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16).					
2.	Gop	alakrishnan N. S. (2016), Commutative Algebra , Universities Press (India) Pvt. Ltd.					
	(Sec	(Sec. 3.1).					
3.	Her	stein I. N. (1975), Topics in Algebra , John Wiley and Sons, New Delhi.					
4.	Jaco	bson N. (2012), Basic Algebra-I , Second Edition, Hindustan Publishing Corporation.					
5.	Fral	eigh J. B. (2003), A first Course in Abstract Algebra , Pearson.					
6.	Bha	ttacharya P.B., Jain S.K. and Nagpaul S.R. (1994), Basic Abstract Algebra , Cambridge					
	Pres	SS.					

DSC 28: Practical Based on DEC 25 and DSC 27	Lecture
Course Objectives:	
1. Developing problem-solving skills.	
2. Enhancing mathematical reasoning and proof skills.	
3. Cultivating abstract thinking.	
4. Familiarize students with fundamental mathematical theories.	
5. Promoting mathematical communication.	
6. Building a strong mathematical foundation.	
7. Fostering independent thinking.	
Perform at TEN Practical from the following	
 Section-I:	
Practical-1: Examples on unit -I of DSE-25	
Practical-2: Examples on unit -II of DSE-25	
Practical-3: Examples on unit -III of DSE-25	
Practical-4: Examples on unit -IV of DSE-25	
Practical-5: Examples on unit -V of DSE-25	
Section-II:	
Practical-6: Examples on unit -I of DSE-27	
Practical-7: Examples on unit -II of DSE-27	
Practical-8: Examples on unit -III of DSE-27	
Practical-9: Examples on unit -IV of DSE-27	
Practical-10: Examples on unit -V of DSE-27	

	DSE 5 (A): Partial Differential	Lecture			
	Equations				
	Course Objectives:				
	• To understand the concepts and applications of Differential				
	equations.				
	• To improve problem-solving and logical thinking abilities of students.				
	• To use the concepts of Differential equations to develop				
	mathematical skills.				
Unit 1	Partial Differential Equations of First Order:				
	First order PDE, classification of integrals, Linear equations of first	1 F I			
	Droblem Integral surfaces through a given surve for partial differential	15 L			
	equations. Charpit's method. Jacobi's method.				
Unit 2	Partial Differential Equations of Second Order:				
	Origin of second order partial differential equation. Linear equations				
	with constant coefficients. Equations with variable coefficients. Method	15 L			
	of separation of variables. Nonlinear equations of the second order				
Unit 2	Lanlace Equation				
onics	The occurrence of Laplace's equation in physics Flementary solution of				
	Laplace's equation. Families of equipotential surfaces. Boundary value	10L			
	problems, Method of separation of variables				
Unit 4	The Wave Equation:				
	The occurrence of wave equation in physics, Elementary solutions of the	101			
	one-dimensional wave equation, Riemann-Volterra solution of the one-	101			
	dimensional wave equation, Method of separation of variables.				
Unit 5	The Diffusion Equation:	40.1			
	The occurrence of the diffusion equation in physics, Elementary	10 L			
Suggost	solutions of the diffusion equation, separation of variables.	I			
	eu reaunigs:	Vl.			
1. Snee	1. Sneddon, I. N. (1957) Elements of Partial Differential Equations , McGraw Hill, New York				
2. Ama	urnath, T. (2008) An Elementary Course in Partial Differential Equation	ns , 2nd			
Edit	ion, Narosa Publishing House.				
3. Johr	n, F. (1982) Partial Differential Equations , Springer-Verlag, New York.				

	DSE 5 (B): Elements in Graph Theory	Lecture
	 Course Objectives: To understand the concepts and applications of Graph Theory To improve the problem-solving and logical thinking abilities of students. To use the concepts of Graph Theory to develop 	
	mathematical skills.	I
Unit 1	Graphs: Definitions and examples, graphs as models, subgraphs, Operations on graphs, Matrix representation of graphs, walks, Trails, Paths, and Cycles. Connectedness and connectedness algorithm.	10 L

Unit 2	Trees and Connectivity:	
	definition and simple properties of a tree, Bridges, Spanning Trees, Cayley's	12 L
	Theorem, Kruskal's Algorithm, Prim's Algorithm, Shortest path problems, The	120
	Breadth First Search (BFS)algorithm, The Backtracing algorithm, Dijkstra's	
	Algorithm, Cut vertices, Connectivity.	
Unit 3	Eulerian and Hamiltonian Graphs: Eulerian trails, Eulerian and semi Eulerian graphs, Fleury's algorithm, Hierholzer's algorithm, The Chinese Postman Problem, Hamiltonian graphs, Dirac theorem, Closure of a graph, Bondy and Chavatal theorem, Travelling salesman problem (optimal algorithms and the closest intersection algorithm are not expected).	8 L
Unit 4	Matching: matching and augmenting paths, Berge theorem, The Hall's marriage problem, the personnel assignment problem and matching algorithm for bipartite graphs, The Hungarian algorithm.	12 L
Unit 5	Planar graphs and Coloring of graphs: Plane and Planar graphs, Euler's Formula, Vertex coloring, Critical graphs, Cliques and edge coloring of graphs.	10 L
Unit 6	Max- Flow, Min- Cut Theorem and Ramsey numbers: definition of Ramsey number, Relations among Ramsey numbers.	8 L
Suggest	ed readings:	
1. Johr	l Clark and Derek Allan Holton: A First Look At Graph Theory, Allied Publishers	Ltd.
2. Bon	dy and Murthy: Graph Theory With Applications.	
3. Bha	ve N.S. and T.T.Raghunathan: Elements of Graph Theory.	
4. Hara	ary F.: Graph Theory.	
5. Part	hsarathi K.R.: Basic Graph Theory.	

	RM : Research Methodology	
Course	Objectives (CObs):	
•	Develop skills to understand and analyze recent topics in Mathematics	
•	Make aware the students for research in Mathematics	
٠	Make a project work on the knowledge acquired on the topic of interest	
Unit 1	Key Concepts 1. Investigation, exploration, examination, analysis 2. Hypothesis and Problem Statement 3. Methods and Modes of Research 4. Data Analysis (Collection and Classification) 5. Reference Lists and Footnotes 6. Quotations and Citation 7. Bibliography / Appendix / Appendices	18L
Unit 2	Research: Tools, Language and Plagiarism 1. Primary and Secondary Data 2. Research Language (Clarity, Correctness, Coherence) 3. Research Ethics	16 L
Unit 3	Research in Language and Literature 1. Methods in Language Research	14 L

	2. Trends and Approaches in Literary Research	
Unit 4	4 Process of Research	12 L
	1. Selection of Research Topic	
	2. Chaptalization: Sections and Sub-sections of Chapters	
	3. Findings and Conclusion	
Sugg	gested readings:	
	1. Ahuja, Ram. (2005), Research Methods.Rawat Publications.	
	2. Altick, R.D. (1963), The Art of Literary Research, New York: Norton. II	
	3. Bawarshi, Anis S. and Reiff, Mary Jo. (2010), Genre: An Introduction to History, Theor	у,
	Research, and Pedagogy. Parlor Press.	
	4. Booth, Wayne C. (2003). The Craft of Research, University of Chicago Press.	

- Booth, Wayne C. (2003), The Craft of Research, University of Chicago Press.
 Eliot, Simon. (1998), A Handbook of Literary Research. Psychology Press.
 Ellis, Jeanne (2010), Practical Research Planning and Design, Ormond, Merrill.

SEM-II

	DSC 29: Complex Analysis	Lecture
	Course Objectives:	
	To make students aware of advances in complex analysis	
	• To know Mobius transformation and conformal mappings	
	• To Improve the logical thinking ability to find applications	
Unit 1	Power series, Analytic functions, Branch of a logarithm, Mobius	101
	(Bilinear) Transformations and Conformal Mappings.	10 L
Unit 2	Riemann-Stieltjes Integrals, Power Series representation of analytic	
	functions, Taylor's Theorem, Cauchy's Estimate, Zeros of an analytic	151
	function, Liouville's theorem, Fundamental Theorem of Algebra,	13 L
	Maximum Modulus Theorem.	
Unit 3	Index of a closed curve, Cauchy's theorem, Cauchy's Integral Formula,	
	Higher Order derivatives, Morera's Theorem, The Homotopic version of	101
	Cauchy's Theorem and simple connectivity, Counting of Zeros, The Open	IUL
	mapping theorem, Goursat's theorem.	
Unit 4	Singularities, Classification of Singularities, Laurent's series, Casorati-	
	Weierstrass theorem, Residues, Cauchy's residue theorem, Evaluation of	15 I
	integrals, Meromorphic functions, The Argument principle, Rouche'	131
	theorem, Schwartz lemma.	
Unit 5	Convex functions and Hadamard's three circles theorem, The space of	
	continuous functions, Spaces of analytic functions, The Riemann	10 L
	mapping theorem	
Suggest	ed readings:	
1. J.B.	Conway, (1995) Functions of One Complex variable, Springer Int. Student Ed	dition.
2. S. P	onnusammy and H. Silverman (2006) Complex Variables with Application	ons,
Birk	hauser.	
3. S. Ponnusammy: Foundations of Complex Analysis, 2nd edition Alpha, Narosa		
Pub	Publishing House.	
4. L.V.	Ahlfors, (1996) Complex Analysis, McGraw-Hill Book Co.	

	DSC 30: Typesetting with Latex	
Course	Objectives (CObs):	
• .	Acquire proficiency in basic typesetting of Latex	
•]	Demonstrate the use of Latex for Latter, Bio-data typing,	
•]	Be familiar with Research paper, article and Book typing with cross referencin	ig and
1	bibliography.	
Unit 1	The Basics: Simple typesetting, Fonts, Typesize, The Document,	
	Documentclass,	071
	Page style, Page numbering, Formatting lengths, Parts of a document,	U/L
	Dividing the document. Table of contents, Index and Glossary:	

Unit 2	Table of contents, Index, Glossary, Displayed Text, borrowed words, Poetry in typesetting, making lists, Rows and Columns, Keeping tabs, Tables	08 L
Unit 3	Typesetting Mathematics: The basics, Custom commands, More on mathematics, Mathematics miscellany, New operators, The many faces of mathematics, Symbols. Typesetting Theorems: Theorems in L ATEX, Designer theorems, The amsthm package,	08 L
Unit 4	Housekeeping. Several Kinds of Boxes: LR boxes, Paragraph boxes, Paragraph boxes with a specific height, Nested boxes, Rule boxes Floats: The figure environment, The table environment. Cross References in LATEX. Pointing to a page—the package varioref, Pointing outside— the package, Footnotes, Margin pars, and Endnotes: Footnotes, Marginal notes, Endnotes. Bibliography.	07 L
Suggest	ed readings: shnan and G. S. Krishna. (2003). Latex Tutorials —A Primer. Indian TEX Users	

Group Floor III, SJP Buildings, Cotton Hills Trivandrum 695014, India.

	DSC 31: Topology	
	Course Objectives:	
	• Students will learn the concept of topology, topology generated by	
	basis.	
	 Students will learn, subspaces, closed sets, limit points of a set. 	
	• Students will learn continuous functions on topological spaces, product	
	topology, metric topology.	
	• Students will learn connectedness of a set, compactness and separation	
	axioms	
Unit 1	Topological Spaces, Basis for a Topology, The Order Topology, The Product	12L
	Topology on X × Y, The Subspace Topology, Closed Sets and Limit Points,	
Unit 2	Continuous Functions, The Product Topology, The Metric Topology, The	12L
	Quotient Topology	
Unit 3	Connected Spaces, Connected Subspaces of the Real Line, Components and	12L
	Local Connectedness	
Unit 4	Compact Spaces, Compact Subspaces of the Real Line, Limit Point	12L
	Compactness, Local Compactness	
Unit 5	The Countability Axioms, The Separation Axioms, Normal Spaces, The	12L
	Urysohn Lemma, The Tietze Extension Theorem(Sec 30-33, 35 [1])	

Suggested readings:

- 1. J. R. Munkres, (1992) **Topology (A first course)**, Prentice Hall of India Ltd. (Sections 12-17, 18-20, 22-33)
- 2. K. D. Joshi: Introduction to general topology, New Age International Private Limited)
- 3. C. Wayne Patty , Foundations of Topology, Jones and Bartlett Publishers, Inc; 2nd edition

DSC 32: Practical Based on DEC 29 and	Lecture
DSU 31	
8. Developing problem-solving skills.	
9. Enhancing mathematical reasoning and proof skills.	
10. Cultivating abstract thinking.	
11. Familiarize students with fundamental mathematical theories.	
12. Promoting mathematical communication.	
13. Building a strong mathematical foundation.	
14. Fostering independent thinking.	
Perform at TEN Practical from the following	
Section-I:	
Practical-1: Examples on unit -I of DSE-29	
Practical-2: Examples on unit -II of DSE-29	
Practical-3: Examples on unit -III of DSE-29	
Practical-4: Examples on unit -IV of DSE-29	
Practical-5: Examples on unit -V of DSE-29	
Section-II:	
Practical-6: Examples on unit -I of DSE-31	
Practical-7: Examples on unit -II of DSE-31	
Practical-8: Examples on unit -III of DSE-31	
Practical-9: Examples on unit -IV of DSE-31	
Practical-10: Examples on unit -V of DSE-31	

	DSE 6(A): Linear Algebra	Lecture
	Course Objectives:	
	• To develop skills and to acquire knowledge of Linear Algebra, Rings and Modules	
	• To prepare students for further courses in mathematics and/or related disciplines (e.g. Commutative algebra, homological agebra, etc.).	
	• To develop the ability to demonstrate underlying principles of the subject and the ability to solve unseen mathematical problems.	
Unit 1	Modules, Submodules, R-homomorphism, Isomorphism.	12 L

Unit 2	Cyclic modules, Faithful modules, Direct sum of modules, free modules,	10 I
	Rank.	12 L
Unit 3	Torsion and Torsion free modules, Structure theorem for finitely	10 I
	generated modules over PID, Application to group Theorem.	12 L
Unit 4	Jordan and Rational canonical forms.	16 L
Unit 5	Local rings, Noetherian modules, Primary decomposition for modules.	08 L
Suggest	ed readings:	
1. N. S. Gopalkrishnan (1988) University Algebra , Wiley – Eastern. (Sec. 3.6, 3.7, Sec. 5.10)		
2. C. S.	Musli (2001) Introduction to Rings & Modules. Cambridge University Pre-	ess. (Sec.
2.1,	2.2, 2.3, 3.2)	
3. I. N.	Herstein (1988) Topics in Algebra, Wiley – Eastern.	
4. M. F	. Atiyah and I. G. MacDonald (2018) Algebra, CRC Press, Boca Raton.	

5. J. Lambek (1966) **Lectures on Rings and Modules**, Blaisdell Publications, Massachusetts.

	DSE 6(B): Theory of Special Functions	Lecture
	Course Objectives:	
	1. To analyze properties of special functions by their integral	
	representations and symmetries.	
	2. To determine properties of Legendre polynomials, Rodrigue's	
	formula, Generating function and Fourier Legendre's serieswhich may	
	be solved by application of special functions.	
	3. To determine properties of solution of Bessel's differential equation	
	and Bessel's functions, Bessel's function of first kind and second kind,	
	Orthogonality of Bessel's functions, The Hypergeometric Functions.	
	4. Study of Hypergeometric series, Euler's Integral Representation, the	
	Hypergeometric equation, the Barnes Integral for the Hypergeometric	
	function	
Unit I	The Gamma & Beta Functions: The Gamma and Beta integrals, Functions	
	and their properties, The Euler Reflection formula, Riemann Zeta	12 I
	functions, Gauss's multiplication formula for $\Gamma(mx)$, Integral	12 1
	representation for Log $\Gamma(mx)$, The Bohr-Mollerup theorem.	
Unit II	Legendre Polynomials: Solution of Legendre differential equation and	10 T
	Legendre polynomials, Rodrigue's formula, Generating function,	14 L
	Recurrence relations,	
Unit III	Orthogonal and orthonormal functions, Orthogonal property of	12 L
	Legendre's polynomials, Fourier Legendre's series.	
Unit IV	Bessel's Functions: Solution of Bessel's differential equation and Bessel's	
	functions, Bessel's function of first	12 L
	kind and second kind, Orthogonality of Bessel's functions, Fourier	
	Bessel's series.	

Unit V	The Hypergeometric Functions: The Hypergeometric series, Euler's	
	Integral Representation, the Hypergeometric equation, the Barnes	12 L
	Integral for the Hypergeometric function.	
Suggeste	d Readings:	
1. Geor	ge E. Andrews, Richard Askey, Ranjana Roy, (2010) Special Functions, Ca	mbridge
Unive	ersity Press. {Chapter 1; 1.1, 1.2, 1.3, 1.5, 1.6, 1.9, Chapter 2; 2.1,2.2, 2.3, 2.4}	
2. R. K.	Jain and S. R. K. Iyengar, (2008) Advanced Engineering Mathematics, Narosa	£
Publi	shing House, New Delhi. {Chapter 7;7.1, 7.2, Chapter 7; 7.4, 7.5,	
3. Mark	A. Pinsky, (1991) Partial Differential Equations and Boundary Value Probl	em with
Appl	ications, McGraw - Hill, Ins. {Chapter 4; 4.2, Chapter 3; 3.2}	
4. Earl	D. Rainville, (1960) Special Functions , Chelsea Publishing Company, New Yo	ork,
(196	0).	
5. H.M.	Srivastava, A Treatise, On Generating Functions, John Wiley & Sons, New Yor	·k.

OJT: Open Job	
Training	
Course Objectives:	
• Skill Development: The training aims to develop specific skills and	
competencies relevant to a particular job or industry. This could	
include technical skills, soft skills, industry-specific knowledge, and	
practical experience.	
Employability Enhancement: Open job training programs focus on	
improving the employability of individuals by equipping them with	
the skills that are in demand in the job market.	
Bridging the Skills Gap: Training programs aim to bridge the gap	
between the skills required by employers and the skills possessed by	
job seekers.	
Career Advancement: Open job training provides opportunities for	
individuals to enhance their career prospects by acquiring new skills or upgrading existing ones.	
• Adaptation to Industry Changes: Training programs help individuals	
stay updated with the latest trends, technologies, and practices in	
their respective industries.	
• Lifelong Learning: Open job training promotes the concept of lifelong	
learning, encouraging individuals to continuously update their skills	
and knowledge throughout their careers.	